# CUBE AND CUBE ROOTS

## EXERCISE (A)

### 1.Find the cube of :

(a) 2.4

(b) 0.25

(c) 40

(d) 51

(e) 1.4

(f) 0.09

(g) ​$$3\dfrac{4}{5}$$

(h) ​$$\dfrac{6}{7}$$

(i) ​$$2\dfrac{8}{11}$$

(j) $$1\dfrac{6}{17}$$

(a) 200

(b) 9261

(c) 64

(d) 4095

(e) 864

(a) 64

(b) 216

(c) 343

(d) 76005

(e) 8009

(a) 11664

(b) 1331

(c) 6859

(d) 8640

(e) 729

## EXERCISE (B)

### 1.Find the cube root of :

(a) 2197

(b) 15625

(c) 125​$$\times$$1331​

(d) 27 ​$$\times$$​(2744)

(e) 91.125

(f) -39304

(g) ​$$4\dfrac{17}{27}$$

(h) -0.000001331

### 2.Show that :

(a) $$\sqrt[3]{512}\times\sqrt[3]{512\times1728}=\sqrt[3]{768}$$

(b) $$\sqrt[3]{64}+\sqrt[3]{729}=\sqrt[3]{(64+729)}$$

(c) ​$$\sqrt[3]{216}\times\sqrt[3]{(-8)}=\sqrt[3]{216\times(-8)}$$

(d) ​$$\sqrt{\sqrt[3]{27}+\sqrt[3]{125}}=\sqrt[3]{3+\sqrt[3]{125}}$$

(e) $$\sqrt[3]{\dfrac{-35937}{6859}}=\dfrac{\sqrt[3]{-35937}}{\sqrt[3]{6859}}$$

(f) $$\dfrac{\sqrt[3]{9261}}{\sqrt[3]{1000}}=\sqrt[3]{\dfrac{9261}{1000}}$$

### 6.What is the smallest number by which 2916 should be multiplied so that the product is a perfect cube? Also,find the cube root of the product.

Insert math as
$${}$$