You cannot copy content of this page

# NCERT solution class 11 chapter 3 Trigonometric Functions exercise 3.5 mathematics

## EXERCISE 3.5

Prove that:

L.H.S.

= 0 = R.H.S

#### Question 2:

Prove that: (sin 3+ sin x) sin + (cos 3– cos x) cos = 0

L.H.S.

= (sin 3+ sin x) sin + (cos 3– cos x) cos x

= RH.S.

Prove that:

L.H.S. =

Prove that:

L.H.S. =

#### Question 5:

Prove that:

It is known that.

∴L.H.S. =

Prove that:

It is known that

.

L.H.S. =

= tan 6x

= R.H.S.

Prove that:

L.H.S. =

#### Question 8:

x in quadrant II

Here, x is in quadrant II.

i.e.,

Therefore,  are all positive.

As x is in quadrant II, cosx is negative.

Thus, the respective values of are.

#### Question 9:

Find for x in quadrant III

Here, x is in quadrant III.

Therefore,  and  are negative, whereasis positive.

Now,

Thus, the respective values of are.

#### Question 10:

Find for x in quadrant II

Here, x is in quadrant II.

Therefore,, and  are all positive.

[cosx is negative in quadrant II]

Thus, the respective values of are .

error: Content is protected !!