NCERT solution class 8 chapter 7 Cube and Cube roots

Exercise 7.1  Exercise 7.2

Exercise 7.1

Question 1

Which of the following numbers are not perfect cubes?

(i) 216

(ii) 128

(iii) 1000

(iv) 100

(v) 46656

Sol :

(i) The prime factorization of 216 is as follows.

2

216

2

108

2

54

3

27

3

9

3

3
1

216 = 2 × 2 × 2 × 3 × 3 × 3 = 23 × 33

Here, as each prime factor is appearing as many times as a perfect multiple of 3, therefore, 216 is a perfect cube.

(ii)The prime factorization of 128 is as follows.

2

128

2

64

2

32

2

16

2

8

2

4

2

2
1

128 = 2 × 2 × 2 × 2 × 2 × 2 × 2

Here, each prime factor is not appearing as many times as a perfect multiple of 3. One 2 is remaining after grouping the triplets of 2. Therefore, 128 is not a perfect cube.

(iii) The prime factorization of 1000 is as follows.

2

1000

2

500

2

250

5

125

5

25

5

5
1

1000 = 2 × 2 × 2 × 5 × 5 × 5

Here, as each prime factor is appearing as many times as a perfect multiple of 3, therefore, 1000 is a perfect cube.

(iv)The prime factorization of 100 is as follows.

2

100

2

50

5

25

5

5
1

100 = 2 × 2 × 5 × 5

Here, each prime factor is not appearing as many times as a perfect multiple of 3. Two 2s and two 5s are remaining after grouping the triplets. Therefore, 100 is not a perfect cube.

(v)The prime factorization of 46656 is as follows.

2

46656

2

23328

2

11664

2

5832

2

2916

2

1458

3

729

3

243

3

81

3

27

3

9

3

3
1

46656 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3 × 3 × 3

Here, as each prime factor is appearing as many times as a perfect multiple of 3, therefore, 46656 is a perfect cube.

 

Question 2

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.

(i) 243

Sol :

(i) 243 = 3 × 3 × 3 × 3 × 3

Here, two 3s are left which are not in a triplet. To make 243 a cube, one more 3 is required.

In that case, 243 × 3 = 3 × 3 × 3 × 3 × 3 × 3 = 729 is a perfect cube.

Hence, the smallest natural number by which 243 should be multiplied to make it a perfect cube is 3.

 

(ii) 256

Sol :

(ii) 256 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

Here, two 2s are left which are not in a triplet. To make 256 a cube, one more 2 is required.

Then, we obtain

256 × 2 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 512 is a perfect cube.

Hence, the smallest natural number by which 256 should be multiplied to make it a perfect cube is 2.

 

(iii) 72

Sol :

(iii) 72 = 2 × 2 × 2 × 3 × 3

Here, two 3s are left which are not in a triplet. To make 72 a cube, one more 3 is required.

Then, we obtain

72 × 3 = 2 × 2 × 2 × 3 × 3 × 3 = 216 is a perfect cube.

Hence, the smallest natural number by which 72 should be multiplied to make it a perfect cube is 3.

 

(iv) 675

Sol :

(iv) 675 = 3 × 3 × 3 × 5 × 5

Here, two 5s are left which are not in a triplet. To make 675 a cube, one more 5 is required.

Then, we obtain

675 × 5 = 3 × 3 × 3 × 5 × 5 × 5 = 3375 is a perfect cube.

Hence, the smallest natural number by which 675 should be multiplied to make it a perfect cube is 5.

 

(v) 100

Sol :

(v) 100 = 2 × 2 × 5 × 5

Here, two 2s and two 5s are left which are not in a triplet. To make 100 a cube, we require one more 2 and one more 5.

Then, we obtain

100 × 2 × 5 = 2 × 2 × 2 × 5 × 5 × 5 = 1000 is a perfect cube

Hence, the smallest natural number by which 100 should be multiplied to make it a perfect cube is 2 × 5 = 10.

 

Question 3

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81

Sol :

(i) 81 = 3 × 3 × 3 × 3

Here, one 3 is left which is not in a triplet.

If we divide 81 by 3, then it will become a perfect cube.

Thus, 81 ÷ 3 = 27 = 3 × 3 × 3 is a perfect cube.

Hence, the smallest number by which 81 should be divided to make it a perfect cube is 3.

 

(ii) 128

Sol :

(ii) 128 = 2 × 2 × 2 × 2 × 2 × 2 × 2

Here, one 2 is left which is not in a triplet.

If we divide 128 by 2, then it will become a perfect cube.

Thus, 128 ÷ 2 = 64 = 2 × 2 × 2 × 2 × 2 × 2 is a perfect cube.

Hence, the smallest number by which 128 should be divided to make it a perfect cube is 2.

 

 

(iii) 135

Sol :

(iii) 135 = 3 × 3 × 3 × 5

Here, one 5 is left which is not in a triplet.

If we divide 135 by 5, then it will become a perfect cube.

Thus, 135 ÷ 5 = 27 = 3 × 3 × 3 is a perfect cube.

Hence, the smallest number by which 135 should be divided to make it a perfect cube is 5.

 

(iv) 192

Sol :

(iv) 192 = 2 × 2 × 2 × 2 × 2 × 2 × 3

Here, one 3 is left which is not in a triplet.

If we divide 192 by 3, then it will become a perfect cube.

Thus, 192 ÷ 3 = 64 = 2 × 2 × 2 × 2 × 2 × 2 is a perfect cube.

Hence, the smallest number by which 192 should be divided to make it a perfect cube is 3.

 

(v) 704

Sol :

(v) 704 = 2 × 2 × 2 × 2 × 2 × 2 × 11

Here, one 11 is left which is not in a triplet.

If we divide 704 by 11, then it will become a perfect cube.

Thus, 704 ÷ 11 = 64 = 2 × 2 × 2 × 2 × 2 × 2 is a perfect cube.

Hence, the smallest number by which 704 should be divided to make it a perfect cube is 11.

 

Question 4

Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube ?

Sol :

Here, some cuboids of size 5 × 2 × 5 are given.

When these cuboids are arranged to form a cube, the side of this cube so formed will be a common multiple of the sides (i.e., 5, 2, and 5) of the given cuboid.

LCM of 5, 2, and 5 = 10

Let us try to make a cube of 10 cm side.

For this arrangement, we have to put 2 cuboids along with its length, 5 along with its width, and 2 along with its height.

Total cuboids required according to this arrangement = 2 × 5 × 2 = 20

With the help of 20 cuboids of such measures, a cube is formed as follows.

Alternatively

Volume of the cube of sides 5 cm, 2 cm, 5 cm

= 5 cm × 2 cm × 5 cm = (5 × 5 × 2) cm3

Here, two 5s and one 2 are left which are not in a triplet.

If we multiply this expression by 2 × 2 × 5 = 20, then it will become a perfect cube.

Thus, (5 × 5 × 2 × 2 × 2 × 5) = (5 × 5 × 5 × 2 × 2 × 2) = 1000 is a perfect cube. Hence, 20 cuboids of 5 cm, 2 cm, 5 cm are required to form a cube.

Leave a Reply

Your email address will not be published. Required fields are marked *